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Chapter 1

Basic Probability

Let (Ω, P ) be a finite probability space. 1 Write Ω = {ω1, ω2, . . . , ωn} and P (ωi) = pi. We have the
most basic formula of probability i.e.

1 =
∑
i

pi, where each 0 ≤ pi ≤ 1 (1.1)

Definition 1.0.1. The probability of an event A is defined as

P (A) =
∑
ωi∈A

pi =

n∑
i=1

piIA(ωi) (1.2)

where IA is the indicator function of A. This function maps ωi to 1 if ωi ∈ A and 0 otherwise.

Some more basic properties of probability are:

• P (Ω) = 1

• P (A ∪B) = P (A) + P (B) if A ∩B = ∅

Such set Ω is called a sample space, and P is called a probability function. It is easy to see from above
properties that

• P (∅) = 0

• P (Ac) = 1− P (A)

• P (A ∪B) = P (A) + P (B)− P (A ∩B)

Definition 1.0.2. The Probability Space is called uniform if pi is the same for all ωi.

1.1 Sequential Experiments

Let us demonstrate this through an elementary example. Assume a binary experiment, taking outcomes
0,1 with q,p respectively. Easy to see that p+ q = 1. Now, consider we repeat this experiment n times.
The sample space in this case is Ωn = {0, 1}n. The probability of a sequence ω = (ω1, ω2, . . . , ωn) is

P ((ω1, ω2, . . . , ωn)) = p
∑

i ωiqn−
∑

i ωi (1.3)

This is the probability function defined on the sample space Ωn. This is a simple example of a product
probability space. We say the space Ωn = {0, 1}n is equipped with the probability function Pn = (q, p)⊗n,
where q,p are the probabilities of 0,1 respectively.
More details on why we did this product come from the notion of independence.

1The book doesn’t mention the sigma field F .

3



1.2 Random Variables

Definition 1.2.1. A random variable is a function X : Ω → R.

We use the denotion (X = x) for the set {ω ∈ Ω : X(ω) = x}. The probability of this event is
P (X = x), this is also known as the probability mass function of X. Similarly cumulative distribution
function is defined as F (x) = P (X ≤ x).

A very underrated fact is the space of random variables is a vector space. This is because the sum
of two random variables is also a random variable, so is the product of a random variable with a scalar.
The basis of this vector space is the indicator functions of the form Iωi where ωi ∈ Ω. 2

Definition 1.2.2. Expectation of a random variable X is defined as (if the sum converges)

E[X] =

k∑
i=1

xiP (X = xi), where k is the number of distinct values of X (1.4)

Some easy to see properties3 of expectation are:

• |E[X]| ≤ E[|X|]

• E[X] ≥ 0 if X ≥ 0

• E[c] = c for any constant c, particularly E[E[X]] = E[X]

• E[aX] = aE[X]

• E[X + Y ] = E[X] + E[Y ]

Say we write X =
∑k

i=1 xiIAi , where Ai = (X = xi). Then E[X] =
∑k

i=1 xiP (Ai), say we take some

function g : R → R, then write Y = g(X) =
∑k

i=1 g(xi)IAi
, hence applying E on both sides, we get

E[Y ] = E[g(X)] =

k∑
i=1

g(xi)P (Ai) (1.5)

1.3 Some nice inequalities

Theorem 1.3.1. Markov’s Inequality: Let X be a non-negative random variable, then for any a > 0,
we have

P (X ≥ a) ≤ E[X]

a
(1.6)

This inequality right above is in some sense the mother of all inequalities. The proof is fairly easy,
just use the fact that P (X ≥ a) can be written as a summation of P (X = xi) for xi ≥ a, multiply by xi

a
and sum over all xi.

Theorem 1.3.2. Chebyshev’s Inequality: Let X be a random variable with finite expectation and
variance, then for any a > 0, we have

P (|X − E[X]| ≥ a) ≤ V ar[X]

a2
(1.7)

Follows fromMarkov’s inequality, just use the fact that V ar[X] = E[(X−E[X])2], and apply Markov’s
inequality on Y = (X − E[X])2.

Definition 1.3.3. The variance of a random variable X is defined as

V ar[X] = E[(X − E[X])2], it simplifies to E[X2]− E[X]2 (1.8)

2Iωi is the function that maps ωi to 1 and all other ωj to 0. As one might expect, this is a random variable as well.
3The last 2 facts imply E is a linear functional on the vector space of random variables.
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Chapter 2

Independence

Definition 2.0.1. Two events A,B are independent if P (A ∩B) = P (A)P (B). Except the trivial case

with P (B) = 0, we can write this as P (A∩B)
P (B) = P (A)

P (Ω) .

Once we have the notion of independence, we can check where does the product probability space
come from.

P ((ω1, ω2, . . . , ωn)) = p
∑

i ωiqn−
∑

i ωi (2.1)

Let us extend the notion to more than 1 event,

Definition 2.0.2. A set of events A1, A2, . . . , An are independent if for any subset I ⊂ {1, 2, . . . , n}, we
have

P (∩i∈IAi) =
∏
i∈I

P (Ai) (2.2)

One very important thing to note is that if the events A1, A2, . . . , An satisfy P (∩i∈IAi) =
∏

i∈I P (Ai)
it doesn’t imply that the events are independent, just take one of the events to be the empty set for
example. An interesting example showing that pairwise independence doesn’t imply mutual independence
is the following. Say we havre a fair coin, define,

A1 = {HH,HT}
A2 = {HH,TH}
A3 = {HT, TH}

Then A1, A2, A3 are pairwise independent, but not mutually independent.

2.1 Independence of Random Variables

Random variables are independent if the events {Xi = x} are independent for all x ∈
al.Alternatively, wecansaythattheevents(X1 ∈ B1) , (X2 ∈ B2), . . ., (Xn ∈ Bn) are independent for

all B1, B2, . . . , Bn ⊂ R. Its not hard to notice the following facts:

• independence of random variables doesn’t depend on the order of the random variables.

• random variablesX1, X2, . . . , Xn are independent if the events (X1 = x1 and X2 = x2 and . . . and Xj−1 =
xj−1)

1 is independent of (Xj = xj) for all j ∈ {2, 3, . . . , n}, x1, x2, . . . , xj−1, xj ∈ R.

• 2 events are independent if and only if the indicator functions are independent.

Now notice the following fact,

Theorem 2.1.1. If X,Y are independent random variables, then

E[XY ] = E[X]E[Y ] (2.3)

1Writing (X1 = x1 and X2 = x2) is the same as writing (X1 = x1) ∩ (X2 = x2)
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Proof. Let A and B be the range of X,Y respectively,
We have

E[XY ] =
∑
x∈A

∑
y∈B

xyP (X = x, Y = y)

=
∑
x∈A

∑
y∈B

xyP (X = x)P (Y = y)

=
∑
x∈A

xP (X = x)
∑
y∈B

yP (Y = y) {By Independence}

= E[X]E[Y ]

Corollary 2.1.2. If X,Y are independent random variables, then V ar[X + Y ] = V ar[X] + V ar[Y ]

Proof.

V ar[X + Y ] = E[(X + Y )2]− E[X + Y ]2

= E[X2] + E[Y 2] + 2E[XY ]− E[X]2 − E[Y ]2 − 2E[X]E[Y ]

= V ar[X] + V ar[Y ]
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Chapter 3

Binomial Distribution

Take the product probability space Ωn = {0, 1}n with Pn = (q, p)⊗n. Let Sn be the number of 1’s in the
sequence ω = (ω1, ω2, . . . , ωn). Then Sn is a random variable on Ωn.

Theorem 3.0.1. The probability mass function of Sn is given by

P (Sn = k) =

(
n

k

)
pkqn−k (3.1)

We say the random variable Sn follows a binomial distribution with parameters n, p. Note that q is
not a parameter, it is just 1− p.
To prove this, just notice the probability of selecting a specific sequence with k 1’s is pkqn−k, and the
number of such sequences is

(
n
k

)
.

Definition 3.0.2. Bernoulli distribution is a special case of binomial distribution with n = 1. It is the
same as a unbiased coin flip. Few properties-

• E[X] = p

• V ar[X] = pq = p(1− p)

Theorem 3.0.3. Let X1, X2, . . . , Xn be independent Bernoulli random variables with parameter p. Then
the sum Sn = X1 +X2 + . . .+Xn follows a binomial distribution with parameters n, p.s

The proof is fairly easy from the results we have already proved.

Theorem 3.0.4. E[Sn] = np and V ar[Sn] = npq

Proof.

E[Sn] = E[X1 +X2 + . . .+Xn]

= E[X1] + E[X2] + . . .+ E[Xn]

= np

For variance, we have

V ar[Sn] = V ar[X1 +X2 + . . .+Xn]

= V ar[X1] + V ar[X2] + . . .+ V ar[Xn]

= npq
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Chapter 4

Kolmogorov’s Consistency Theorem

4.1 Introduction

We will now shift our discussion to understanding limits of random variable, which allows us to move
towards the limit theorems such as Law of Large Numbers, Central Limit Theorem etc.

The fundamental concept of limits of random variable require us to understand what does sequence
of Random Variables mean, and does it even exist. This needs a powerful theorem in measure theory
called Kolmogorov’s Consistency (Extension) Theorem.

Roughly speaking, Kolmogorov’s Consistency Theorem states that if we have some ’consistent’ col-
lection of distribution, then there exists a schocastic process that has those distributions.

4.2 Formal Framework

To rigorously frame this, let’s define few terms.

Definition 4.2.1 (Schocastic Process). Let X a collection of random variables {Xt}t∈T , where T is an
index set, such that each Xt is a random variable on a probability space (Ω,F , P ), and range of Xt is
R. Then X is called a schocastic process if {X(ω) = (Xt(ω) : t ∈ T ) ∈ B} ∈ F for all B ∈ B(RT ).

For the above definition, let us define what we mean by finite dimensional distributions.

Definition 4.2.2 (Finite Dimensional Distributions). Let X be a schocastic process. Then the finite
dimensional distributions of X are the distributions of the random vectors (Xt1 , Xt2 , . . . , Xtn) for all
n ∈ N and t1, t2, . . . , tn ∈ T .

Note that when we say ’distribution’ we mean that of a random vector, so it is nothing but a multi-
variate function which should satisfy the properties of a typical cumulative distribution function.

Definition 4.2.3 (Indistinguishability of Schocastic Processes). Two schocastic processes X and Y are

said to be indistinguishable if they have the same finite dimensional distributions. Denoted by X d
= Y.

Definition 4.2.4 (Consistent Collection of Distributions). A collection of distributions D is said to be
consistent if it satisfies the following properties:

1. Each function Ft1,t2,...,tk in D is a distribution function.

2. Ft1,t2,...,tk(x1, x2, . . . , xk−1,∞) = Ft1,t2,...,tk−1
(x1, x2, . . . , xk−1) for all k ≥ 2.

3. For a permutation π of {1, 2, . . . , k}, Ft1,t2,...,tk(x1, x2, . . . , xk) = Ftπ(1),tπ(2),...,tπ(k)
(xπ(1), xπ(2), . . . , xπ(k)).

Now we are ready to state Kolmogorov’s Consistency Theorem.

Theorem 4.2.5. Let P = {Pn}n∈N be a consistent collection of distributions. Then there exists a schocas-

tic process X, and a probability space (Ω,F , P ) with P (
⋂k

i=1{Xti ≤ xi}) = Ft1,t2,...,tk(x1, x2, . . . , xk) for
every (x1, x2, . . . , xk) ∈ Rk and k ≥ 1. Moreover, X is unique in distribution.

Now we have the theorem for general schocastic process, lets limit ourselves to index set T = N, which
is nothing but a sequence of random variables. Before that, let’s quickly define what is ’consistency’ for
this particular case.
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Definition 4.2.6. A collection of distributions L is said to be consistent if it satisfies the following
properties:

1. Each function F1,2,3...k in L is a distribution function.

2. F1,2,3...k(x1, x2, . . . , xk−1,∞) = F1,2,3...k−1(x1, x2, . . . , xk−1) for all k ≥ 2.

An interesting thing to note is how the above definition is equivalent to the Definition 2.4, where T
is just N. That is easy to see, since every permutation of a finite subset of N has a canonical order which
is just the ascending order.

Corollary 4.2.7. Let L be a consistent collection of distributions. Then there exists a sequence of
random variables X and a probability space such that L is the finite dimensional distributions of X.
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Chapter 5

Weak Law of Large Numbers

The Kolmogorov’s Theorem gives us the existence of a sequence of random variables, so now once we
have that, let the sequence be {Xn}n∈N, where Xn are independent and identically distributed random
variables. For now, let’s assume the 2nd moment of Xn exists (hence the variance exists). We are
interested in the sample mean of the first n random variables, which is given by X̄n = 1

n

∑n
i=1 Xi.

Now let’s say E(X1) = µ (hence E(Xk) = µ for all k ≤ n)

E(X̄n) = E

(
1

n

n∑
i=1

Xi

)

=
1

n

n∑
i=1

E(Xi)

=
1

n

n∑
i=1

µ

= µ

So we have E(X̄n) = µ for all n. Now let’s calculate the variance of X̄n.

V ar

(
n∑

i=1

Xi

)
=

n∑
i=1

V ar(Xi) + 2
∑

1≤i<j≤n

Cov(Xi, Xj)

= nV ar(X1) (Since Xi are i.i.d., hence covariances vanish)

Hence, we get

V ar(X̄n) = V ar(
1

n

n∑
i=1

Xi) =
1

n2
V ar(

n∑
i=1

Xi) = n
1

n2
V ar(X1) =

1

n
V ar(X1)

Now we know variance is a measure of dispersion, and as n → ∞, V ar(X̄n) =
1
nV ar(X1) → 0. Which

means that the sample mean X̄n converges to the true mean µ as n → ∞.
To state it formally, let us define Lp convergence and convergence in probability.

Definition 5.0.1 (Lp Convergence). Let {Xn}n∈N be a sequence of random variables andX be a random
variable. Then {Xn}n∈N is said to converge in Lp to X if E(|Xn −X|p) → 0 as n → ∞.

Definition 5.0.2 (Convergence in Probability). Let {Xn}n∈N be a sequence of random variables and
X be a random variable. Then {Xn}n∈N is said to converge in probability to X if for all ϵ > 0,
P (|Xn −X| > ϵ) → 0 as n → ∞.

It is easy to see that Lp convergence for any p > 0 implies convergence in probability. Notice, since
the variance of X̄n goes to 0 as n → ∞, X̄n converges in L2 to µ, hence it converges in probability to µ.
This is the Weak Law of Large Numbers, let us state it formally.

Theorem 5.0.3 ((A weaker version 1 of) Weak Law of Large Numbers). Let {Xn}n∈N be a sequence of
i.i.d. random variables with E(X1) = µ and V ar(X1) = σ2. Then the sample mean X̄n = 1

n

∑n
i=1 Xi

converges in probability to µ.

1We are nowhere near SLLN yet, as it says about almost sure convergence
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The above theorem is a weaker version of the Weak Law of Large Numbers, since we assume variance
(and hence 2nd moment) exists. The actual theorem does not require the variance to exist, and is a
stronger result, now notice the idea of the proof of the above theorem, we used the fact that variance
goes to 0 as n → ∞, this idea can be generalized for any p > 1, but now we need some way to say it
for p = 1, which only assume the existence of the first moment, which indeed is the weak law of large
numbers. But the catch is, it is not easy to do just that, and we need some more notions to do that,
which we will not mention here.

The experimental probability of success is Sn

n , intutively we expect this to be close to p as n increases.
This is the weak law of large numbers.

Theorem 5.0.4. Let X1, X2, . . . , Xn be independent and identically distributed (iid) random variables
with mean µ. Let Sn = X1 +X2 + . . .+Xn. Then for any ϵ > 0, we have

P

(∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ϵ

)
→ 0 as n → ∞ (5.1)

Proof. Use Chebyshev’s inequality, we have

P

(∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ϵ

)
≤ V ar[Sn/n]

ϵ2

=
V ar[Sn]

n2ϵ2

=
nσ2

n2ϵ2
(By Independence)

=
σ2

nϵ2

→ 0 as n → ∞

This has a nice application in analysis, the problem of uniformly approximating a continuous function
by a polynomial. This is known as Weierstrass Approximation Theorem. To state it rigorously, let
f : [0, 1]2 → R be a continuous function. Then for any ϵ > 0, there exists a polynomial P (x) such that
|f(x)− P (x)| < ϵ for all x ∈ [0, 1].
Serge Bernstein gave a probabilistic proof of this theorem.

Lemma 5.0.5. Let f be a continuous function on [0, 1]. Then,

sup
x∈[0,1]

|f(x)− Pn(x)| → 0 as n → ∞ ,where Pn(x) =

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k (5.2)

Proof. Fix ϵ > 0, ∃ η such that

|x− y| < η =⇒ |f(x)− f(y)| < ϵ where 0 ≤ x, y ≤ 1 (5.3)

Consider the space (Ωn, Pn), and the random variable f
(
Sn

n

)
where Sn is as above. We have

E

[
f

(
Sn

n

)]
=

n∑
k=0

f

(
k

n

)
P (Sn = k)

=

n∑
k=0

f

(
k

n

)(
n

k

)
pk(1− p)n−k

By WLLN, we have

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ η

)
→ 0 as n → ∞ (5.4)

2This can be generalised to any closed interval [a,b]
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Hence, ∃ N0 independent of p, such that for every n ≥ N0

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ > η

)
< ϵ (5.5)

Also we have ∣∣∣∣En

[
f

(
Sn

n

)]
− f(p)

∣∣∣∣ =
∣∣∣∣∣

n∑
k=0

(
f

(
k

n

)
− f(p)

)
Pn(Sn = k)

∣∣∣∣∣
breaking the sum into 2 parts, and applying the triangle inequality, we get the following upper bound,∑

| kn−p|≤η

∣∣∣∣f (k

n

)
− f(p)

∣∣∣∣Pn(Sn = k) +
∑

| kn−p|>η

(∣∣∣∣f (k

n

)∣∣∣∣+ |f(p)|
)
Pn(Sn = k)

≤
∑

| kn−p|≤η

ϵPn(Sn = k) +
∑

| kn−p|>η

2 sup
0≤x≤1

|f(x)|Pn(Sn = k)

=ϵ+ 2 sup
0≤x≤1

|f(x)|Pn

(∣∣∣∣Sn

n
− p

∣∣∣∣ > η

)
=ϵ+ 2 sup

0≤x≤1
|f(x)|ϵ

Which shows the upper bound can be made arbitrarily small, hence the proof.
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Chapter 6

Large Deviations Estimate

As we saw in the last chapter, the WLLN tells us the sample mean X̄n of i.i.d. random variables
converges in probability to the true mean µ. For instance, in n independent Bernoulli trials with success
probability p, the proportion of successes Sn

n converges to p. But notice, we still don’t know anything
about the rate of this convergence. For many applications, knowing this is crucial. Going forward, let’s
shift our focus to X1 ∼ Ber(p) again.

The Chebyshev inequality, which we used to prove a version of the WLLN, provides a bound:

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ϵ

)
≤ V ar(Sn/n)

ϵ2
=

p(1− p)

nϵ2
. (6.1)

This bound gives us an idea that the probability decreases as O( 1n ). However, it turns out, the actual
probability in the above equation, decays much faster, exponentially in p. This is the base of large-
deviations theory.

6.1 The Large Deviations Estimate for Bernoulli Trials

We will now present the result for the Bernoulli case, which shows that the rate of convergence is indeed
exponential. Let Sn be as usual.

First, for every ϵ ∈ (0, 1− p), we define the function:

h+(ϵ) := (p+ ϵ) ln
p+ ϵ

p
+ (1− p− ϵ) ln

1− p− ϵ

1− p
.

This function will appear in the exponent of our bound. It can be shown that h+(ϵ) > 0 for ϵ ∈ (0, 1−p).

Theorem 6.1.1 (Large Deviations Estimate for Bernoulli Upper Tail). For every ϵ ∈ (0, 1 − p) and
n ≥ 1, we have

P

(
Sn

n
≥ p+ ϵ

)
≤ e−nh+(ϵ).

A similar bound holds for the lower tail, P (Sn

n ≤ p− ϵ), by defining h−(ϵ) := h+(−ϵ) for 0 < ϵ < p.

Proof of Theorem 6.1.1. 1 Fix t > 0. Since ex is an increasing function, the event Sn

n ≥ p+ϵ is equivalent
to Sn ≥ n(p+ ϵ), which in turn is equivalent to tSn ≥ tn(p+ ϵ). Thus,

P

(
Sn

n
≥ p+ ϵ

)
= P (Sn ≥ n(p+ ϵ)) = P (etSn ≥ etn(p+ϵ)).

By Markov’s inequality, since Y = etSn is non-negative, we get

P (etSn ≥ etn(p+ϵ)) ≤ E[etSn ]

etn(p+ϵ)
.

Now, Sn =
∑n

i=1 Xi where Xi are i.i.d. Bernoulli(p) random variables.

1The proof uses a technique known as Chernoff’s bounding method.
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Now as we can see, in the numerator we have a term for E(etSn) we want to calculate this, for some
t ∈ R, t > 0, so we start with

E[etSn ] = E[et(X1+X2+...+Xn)] = E[etX1etX2 · · · etXn ].

Because the random variables Xi are independent, the expectation of their product is the product of
their expectations:

E[etX1etX2 · · · etXn ] = E[etX1 ]E[etX2 ] · · ·E[etXn ].

Since all Xi are identically distributed, E[etXi ] is the same for all i. Let’s calculate this for a single Xi:

E[etXi ] =
∑

k∈{0,1}

etkP (Xi = k)

= et·0P (Xi = 0) + et·1P (Xi = 1)

= (1) · (1− p) + et · p
= 1− p+ pet.

Therefore, substituting this back, we get:

E[etSn ] = (E[etX1 ])n = (1− p+ pet)n.

2 Substituting this into our inequality:

P

(
Sn

n
≥ p+ ϵ

)
≤ (1− p+ pet)n

etn(p+ϵ)
=
(
(1− p+ pet)e−t(p+ϵ)

)n
.

It is cleat that this holds ∀ t > 0. To get the tightest possible bound, we minimize the term inside the
parenthesis with respect to t. This is equivalent to minimizing its log, or maximizing the negative of its
log:

ln
(
(1− p+ pet)e−t(p+ϵ)

)
= ln(1− p+ pet)− t(p+ ϵ).

Let g(t) = t(p + ϵ) − ln(1 − p + pet). We wish to maximize g(t) for t > 0. Taking the derivative with
respect to t and putting it zero:

g′(t) = p+ ϵ− pet

1− p+ pet
= 0.

Solving for et
∗
:

(p+ ϵ)(1− p+ pet
∗
) = pet

∗

(p+ ϵ)(1− p) + (p+ ϵ)pet
∗
= pet

∗

(p+ ϵ)(1− p) = pet
∗
− (p+ ϵ)pet

∗
= pet

∗
(1− (p+ ϵ)) = pet

∗
(1− p− ϵ).

So, et
∗
= (p+ϵ)(1−p)

p(1−p−ϵ) . For this t∗ to be positive, we need et
∗
> 1, which means (p+ϵ)(1−p) > p(1−p−ϵ).

p − p2 + ϵ − ϵp > p − p2 − pϵ =⇒ ϵ > 0, which is true by assumption. Also, for t∗ to be well-defined,
we need p+ ϵ < 1 and 1− p− ϵ > 0.

The value of the exponent at this optimal t∗ is − supt>0 g(t). It is easy to see that supt>0 g(t) is
precisely h+(ϵ). Thus, P

(
Sn

n ≥ p+ ϵ
)
≤ e−nh+(ϵ).

A similar argument yields for the lower tail, and the related function h−(ϵ)

P (
Sn

n
≤ p− ϵ) ≤ e−nh−(ϵ)

For the particular case of bernouli, it follows from simply interchanging p by 1− p, and Sn by n− Sn

2The term E[etX ] is called the moment generating function (mgf) for some random variable X. Turns out for the sum
Sn of iid r.v.s {Xi}ni=1,mgfSn

(t) = (mgfX1
(t))n
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6.2 Optimality of the bound

The bound e−nh+(ϵ) we obtain here is not just an arbitrary upper bound; it is, in a logarithmic sense,
the best possible exponential bound.

Proposition 6.2.1 (Optimality of the Exponent). For every ϵ ∈ (0, 1− p),

lim
n→∞

1

n
lnP

(
Sn

n
≥ p+ ϵ

)
= −h+(ϵ).

Proof. From Theorem 6.1.1 we have, P
(
Sn

n ≥ p+ ϵ
)
≤ e−nh+(ϵ). Taking the logarithm, dividing by n,

and taking the limit superior, we get:

lim sup
n→∞

1

n
lnP

(
Sn

n
≥ p+ ϵ

)
≤ −h+(ϵ).

To complete the proof, we need to show the corresponding lower bound for the limit inferior:

lim inf
n→∞

1

n
lnP

(
Sn

n
≥ p+ ϵ

)
≥ −h+(ϵ).

Let kn = ⌈n(p+ ϵ)⌉. Since ϵ ∈ (0, 1− p), we have p < p+ ϵ < 1. For large n, kn is an integer such that
0 < kn < n. Also, as n → ∞, kn/n → p+ ϵ. Let qn = kn/n. So, qn → p+ ϵ.

The event {Sn/n ≥ p+ ϵ} includes the event {Sn = kn} because kn/n = ⌈n(p+ ϵ)⌉/n ≥ n(p+ ϵ)/n =
p+ ϵ. Thus,

P

(
Sn

n
≥ p+ ϵ

)
≥ P (Sn = kn).

The probability P (Sn = kn) is given by the binomial formula:

P (Sn = kn) =

(
n

kn

)
pkn(1− p)n−kn .

We use Stirling’s approximation for the factorial3, which yields approximation for binomial coefficient(
n
k

)
∼ 1√

2πn(k/n)(1−k/n)
enH(k/n), where H(q) = − ln q − (1− q) ln(1− q). So, for qn = kn/n:(

n

kn

)
∼ 1√

2πnqn(1− qn)
enH(qn).

Therefore,

P (Sn = kn) ∼
1√

2πnqn(1− qn)
enH(qn)pnqn(1− p)n(1−qn)

=
1√

2πnqn(1− qn)
en[−qn ln qn−(1−qn) ln(1−qn)+qn ln p+(1−qn) ln(1−p)]

=
1√

2πnqn(1− qn)
e−n[qn ln(qn/p)+(1−qn) ln((1−qn)/(1−p))].

Let f(q) = q ln(q/p)+(1−q) ln((1−q)/(1−p)). As n → ∞, qn = kn/n → p+ ϵ. Since f(q) is continuous
for q ∈ (0, 1),

lim
n→∞

[
qn ln

qn
p

+ (1− qn) ln
1− qn
1− p

]
= (p+ ϵ) ln

p+ ϵ

p
+ (1− (p+ ϵ)) ln

1− (p+ ϵ)

1− p
= h+(ϵ).

Now consider 1
n lnP (Sn = kn). Since An ∼ Bn implies lnAn = lnBn + o(1),

1

n
lnP (Sn = kn) =

1

n
ln

(
1√

2πnqn(1− qn)

)
−
[
qn ln

qn
p

+ (1− qn) ln
1− qn
1− p

]
+

o(1)

n

= − ln(2πnqn(1− qn))

2n
−
[
qn ln

qn
p

+ (1− qn) ln
1− qn
1− p

]
+ o(1/n).

As n → ∞:
3Proved in next chapter
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• qn → p + ϵ. Since p + ϵ ∈ (0, 1), qn(1 − qn) converges to (p + ϵ)(1 − (p + ϵ)), which is a positive
constant.

• Thus, ln(2πnqn(1− qn)) ∼ ln(Cn) for some constant C > 0.

• So, limn→∞ − ln(2πnqn(1−qn))
2n = 0.

• The term in square brackets converges to h+(ϵ).

• The o(1/n) term vanishes.

Therefore,

lim
n→∞

1

n
lnP (Sn = kn) = −h+(ϵ).

Since P
(
Sn

n ≥ p+ ϵ
)
≥ P (Sn = kn), we have

lnP

(
Sn

n
≥ p+ ϵ

)
≥ lnP (Sn = kn).

Dividing by n and taking the limit inf:

lim inf
n→∞

1

n
lnP

(
Sn

n
≥ p+ ϵ

)
≥ lim

n→∞

1

n
lnP (Sn = kn) = −h+(ϵ).

Combining the lim sup result and this lim inf result, we conclude:

lim
n→∞

1

n
lnP

(
Sn

n
≥ p+ ϵ

)
= −h+(ϵ).

6.3 Extension to other random variables

The method used in the 6.1.1 is quite generalizable, and can be extended to sums Sn =
∑n

i=1 Xi of
other independent and identically distributed (i.i.d.) random variables, provided the moment generating
function (MGF) exists. Let X1, X2, . . . be i.i.d. random variables with mean E[X1] = µ. Let MX(t) =
E[etX1 ] be their common MGF, assumed to exist for t in some interval around 0. Let KX(t) = lnMX(t)
be the cumulant generating function (CGF).

Following the same steps as in the Bernoulli proof:
1. For x > µ (e.g., x = µ+ ϵ), and t > 0:

P

(
Sn

n
≥ x

)
= P (Sn ≥ nx) ≤ E[etSn ]

etnx
=

(MX(t))n

etnx
=
(
MX(t)e−tx

)n
.

2. To find the tightest bound, we minimize MX(t)e−tx with respect to t > 0, which is equivalent to
maximizing tx−KX(t):

P

(
Sn

n
≥ x

)
≤ e−n supt>0[tx−KX(t)].

The function I(x) = supt[tx−KX(t)] (where the supremum is taken over t such that KX(t) is defined,
and typically t > 0 if x > µ, t < 0 if x < µ) is called the rate function Thus, the general bound, called
the ’Chernoff Bound’ is:

P

(
Sn

n
≥ x

)
≤ e−nI(x) for x > µ.

And similarly,

P

(
Sn

n
≤ x

)
≤ e−nI(x) for x < µ.

Proposition 6.2.1, which is known as ’Cramer’s Theorem’ in its general form, states that under certain
regularity conditions on Xi, this rate I(x) is indeed optimal in the logarithmic sense:

lim
n→∞

1

n
lnP

(
Sn

n
≈ x

)
= −I(x).
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The function h+(ϵ) we saw for the Bernoulli case is simply I(p + ϵ) when Xi ∼ Bernoulli(p). Each
distribution with a well-defined MGF will have its own specific rate function I(x).

This idea forms the foundation of Large Deviation Theory, which allows us to quantify the exponen-
tially small probabilities of such types of events.

17



Chapter 7

The Central Limit Theorem

7.1 Towards Central Limit Theorem

Now we have the weak law of large numbers, let’s try to understand the Central Limit Theorem. The
Central Limit Theorem roughly states that the sum of a large number of i.i.d. random variables is
approximately normally distributed. Let’s try to understand this.

Let us just roughly go through the intuition of the Central Limit Theorem. Let X1, X2, . . . , Xn be
i.i.d. random variables with E[X1] = µ and V ar(X1) = σ2 > 0. Consider the sum Sn =

∑n
i=1 Xi.

We know E[Sn] = nµ and V ar(Sn) = nσ2. The Weak Law of Large Numbers tells us that the sample
mean X̄n = Sn/n converges in probability to µ. This implies that for large n, Sn/n is concentrated
around µ, and thus Sn is concentrated around nµ. Now consider the centered sum Sn − nµ. Clearly,
E[Sn−nµ] = E[Sn]−nµ = nµ−nµ = 0. The variance is V ar(Sn−nµ) = V ar(Sn) = nσ2. If we simply
look at Sn − nµ, its variance nσ2 → ∞ as n → ∞ (unless σ2 = 0, which is a trivial case). If we look at
(Sn − nµ)/n = X̄n − µ, its variance is V ar(X̄n − µ) = V ar(X̄n) = σ2/n → 0 as n → ∞. This means
X̄n − µ converges to a random variable with mean 0 and variance 0, i.e., it converges to the constant 0.
This is consistent with the WLLN, but it results in a degenerate distribution in the limit.

To obtain a non-degenerate limiting distribution, we need to find a normalization that keeps the
variance stable and positive as n → ∞. Consider the standardized sum:

Zn =
Sn − E[Sn]√

V ar(Sn)
=

Sn − nµ√
nσ2

=
Sn − nµ

σ
√
n

.

Let’s check the mean and variance of Zn:

E[Zn] = E

[
Sn − nµ

σ
√
n

]
=

1

σ
√
n
E[Sn − nµ] =

1

σ
√
n
· 0 = 0.

V ar(Zn) = V ar

(
Sn − nµ

σ
√
n

)
=

1

(σ
√
n)2

V ar(Sn − nµ) =
1

nσ2
· nσ2 = 1.

So, for every n, Zn is a random variable with mean 0 and variance 1. This normalization gives us
hope that Zn might converge to some non-degenerate distribution with mean 0 and variance 1. That
distribution, remarkably, turns out to be the standard normal distribution N(0, 1). This is the essence
of the Central Limit Theorem.

7.2 Statement of the Theorem

The Central Limit Theorem is fascinating because of the extremely wide range of applications, and it
establishes the fundamental role of the normal (or Gaussian) distribution, the famous bell curve, it is
the reason, of what’s so ’normal’ about the normal distrubution.

Let X1, X2, . . . , Xn be a sequence of independent and identically distributed random variables with
E[X1] = µ and V ar(X1) = σ2 Let Sn =

∑n
i=1 Xi. Then E[Sn] = nµ and V ar(Sn) = nσ2. The

standardized sum is Zn = Sn−nµ√
nσ2

.
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Theorem 7.2.1 (Central Limit Theorem). Let a and b be two elements of R∪{+∞}∪{−∞} such that
a < b. Then

lim
n→∞

P

(
a ≤ Sn − np√

np(1− p)
≤ b

)
=

1√
2π

∫ b

a

e−x2/2 dx.

The integral on the right-hand side represents the probability that a standard normal random variable
Z ∼ N(0, 1) falls between a and b. We often denote Φ(b)−Φ(a), where Φ(z) = 1√

2π

∫ z

−∞ e−x2/2 dx is the

cumulative distribution function (CDF) of the standard normal distribution.

Note how we didn’t comment on the type of convergence in the introductory intuition. The theorem
above states convergence of probabilities, which is equivalent to convergence in distribution of the stan-
dardized sum Zn to a standard normal random variable. This means the CDF of Zn converges pointwise
to the CDF of N(0, 1) at all the continuity points, which is ∀t ∈ R. It can be shown that this convergence
is, in fact, uniform in both a and b

7.3 Remarks on the Normal Distribution

The function f(x) = 1√
2π

e−x2/2 is the probability density function (PDF) of the standard normal distri-

bution, often called the Gaussian curve. An important property is that its integral over the entire real
line is 1:

1√
2π

∫ +∞

−∞
e−x2/2 dx = 1.

The integral of e−x2/2 cannot be expressed in terms of elementary functions, but its definite integrals can
be computed numerically to really high precision. The function Φ(y) = 1√

2π

∫ y

−∞ e−x2/2 dx is extensively

tabulated and can be calcualted using any standard statistical software.

7.4 Proof for the Bernoulli Case

We will for this section restrict ourselves again to only sum of iid bernouli. In this simple-looking case
aswell, the proof of Theorem 7.2.1 is composed of several steps. The most important instrument is
Stirling’s formula which approximates n!, which allows us to estimate binomial probabilities P (Sn = k).
This leads to the de Moivre-Laplace theorem, which gives an approximation for P (Sn = k). The final
step involves summing these local probabilities, which approximates a Riemann sum for the integral of
the normal density.

Proposition 7.4.1 (Stirling’s Formula). For each integer n > 0,

n! ∼
√
2πn

(n
e

)n
,

meaning limn→∞
n!√

2πn(n/e)n
= 1. More precisely, n! =

√
2πnnne−n(1 + ϵn), where ϵn = O(1/n)

Proof. First, we will show that there exists a c1 ∈ R such that

ln(n!) = c1 +

(
n+

1

2

)
lnn− n+O

(
1

n

)
.

This estimate is based on a comparison of the series with general term lnn to the logarithmic integral.
We write

ln(n!) =

n∑
k=1

ln k =

∫ n+1/2

1/2

ln t dt+

n∑
k=1

(
ln k −

∫ k+1/2

k−1/2

ln t dt

)
. (7.1)

On one hand,∫ n+1/2

1/2

ln t dt = [t ln t− t]
n+1/2
1/2 =

(
n+

1

2

)
ln

(
n+

1

2

)
−
(
n+

1

2

)
−
(
1

2
ln

1

2
− 1

2

)
.
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Let c2 = −( 12 ln
1
2 − 1

2 ). The Taylor series for the logarithm function about 1 yields ln(1 + x) = x −
x2/2 +O(x3). Thus,

ln

(
n+

1

2

)
= ln

(
n

(
1 +

1

2n

))
= lnn+ln

(
1 +

1

2n

)
= lnn+

1

2n
−1

2

(
1

2n

)2

+O

(
1

n3

)
= lnn+

1

2n
+O

(
1

n2

)
.

So, (
n+

1

2

)
ln

(
n+

1

2

)
=

(
n+

1

2

)(
lnn+

1

2n
+O

(
1

n2

))
= n lnn+

1

2
+O

(
1

n

)
+

1

2
lnn+O

(
lnn

n

)
=

(
n+

1

2

)
lnn+

1

2
+O

(
lnn

n

)
.

Therefore,∫ n+1/2

1/2

ln t dt =

(
n+

1

2

)
lnn+

1

2
− n− 1

2
+ c2 +O

(
lnn

n

)
=

(
n+

1

2

)
lnn− n+ c3 +O

(
1

n

)
, (7.2)

for some constant c3 = c2.

On the other hand, consider the term ln k −
∫ k+1/2

k−1/2
ln t dt.

∫ k+1/2

k−1/2

ln t dt = [t ln t− t]
k+1/2
k−1/2 =

(
k +

1

2

)
ln

(
k +

1

2

)
−
(
k − 1

2

)
ln

(
k − 1

2

)
− 1.

Using ln(k ± 1/2) = ln k + ln(1± 1/(2k)) = ln k ± 1
2k − 1

8k2 ± 1
24k3 +O(1/k4):(

k +
1

2

)
ln

(
k +

1

2

)
=

(
k +

1

2

)(
ln k +

1

2k
− 1

8k2
+O

(
1

k3

))
= k ln k +

1

2
− 1

8k
+

1

2
ln k +

1

4k
+O

(
1

k2

)
= k ln k +

1

2
ln k +

1

2
+

1

8k
+O

(
1

k2

)
.

(
k − 1

2

)
ln

(
k − 1

2

)
=

(
k − 1

2

)(
ln k − 1

2k
− 1

8k2
+O

(
1

k3

))
= k ln k − 1

2
− 1

8k
− 1

2
ln k +

1

4k
+O

(
1

k2

)
= k ln k − 1

2
ln k − 1

2
+

1

8k
+O

(
1

k2

)
.

Subtracting these:(
k +

1

2

)
ln

(
k +

1

2

)
−
(
k − 1

2

)
ln

(
k − 1

2

)
= ln k + 1 +O

(
1

k2

)
.

So we have, ∫ k+1/2

k−1/2

ln t dt = [t ln t− t]
k+1/2
k−1/2

=

(
k +

1

2

)
ln

(
k +

1

2

)
−
(
k − 1

2

)
ln

(
k − 1

2

)
− 1

= ln k + 1 +O

(
1

k2

)
− 1 = ln k +O

(
1

k2

)

20



So, we get

ln k −
∫ k+1/2

k−1/2

ln t dt = O

(
1

k2

)
.

Thus, the series
∑∞

k=1

(
ln k −

∫ k+1/2

k−1/2
ln t dt

)
is absolutely convergent. Let

c5 :=

∞∑
k=1

(
ln k −

∫ k+1/2

k−1/2

ln t dt

)
.

Then,
n∑

k=1

(
ln k −

∫ k+1/2

k−1/2

ln t dt

)
= c5 −

∞∑
k=n+1

(
ln k −

∫ k+1/2

k−1/2

ln t dt

)
. (7.3)

Since the general term isO(1/k2), the tail sum
∑∞

k=n+1 O(1/k2) isO(1/n). So,
∑n

k=1

(
ln k −

∫ k+1/2

k−1/2
ln t dt

)
=

c5 +O
(
1
n

)
.

From (7.1), (7.2), and (7.3):

ln(n!) =

(
n+

1

2

)
lnn− n+ c3 + c5 +O

(
1

n

)
.

Let c1 = c3 + c5. Then ln(n!) =
(
n+ 1

2

)
lnn − n + c1 + O

(
1
n

)
. Exponentiating, we get n! =

ec1nn+1/2e−neO(1/n). Since eO(1/n) = 1 +O(1/n),

n! = d · nn+1/2e−n(1 + ϵn),

where d = ec1 and ϵn = O(1/n).
To complete the proof, we must show that d =

√
2π. To do this, we use Wallis’ integrals, defined for

m ∈ N by

Im :=

∫ π/2

0

sinm t dt.

Integration by parts yields Im =
∫ π/2

0
sinm−1 t sin t dt.

Im = [− sinm−1 t cos t]
π/2
0 −

∫ π/2

0

(m− 1) sinm−2 t cos t(− cos t) dt = (m− 1)

∫ π/2

0

sinm−2 t cos2 t dt.

So, Im = (m− 1)
∫ π/2

0
sinm−2 t(1− sin2 t) dt = (m− 1)(Im−2 − Im).

This yields the recurrence mIm = (m−1)Im−2 for m ≥ 2. We have I0 = π/2 and I1 =
∫ π/2

0
sin t dt =

[− cos t]
π/2
0 = 1. For n ≥ 1:

I2n =
2n− 1

2n

2n− 3

2n− 2
· · · 1

2
I0 =

(2n− 1)!!

(2n)!!

π

2
=

(2n)!

(2nn!)2
π

2
.

I2n+1 =
2n

2n+ 1

2n− 2

2n− 1
· · · 2

3
I1 =

(2n)!!

(2n+ 1)!!
=

(2nn!)2

(2n+ 1)!
.

Since 0 ≤ sin t ≤ 1 for t ∈ [0, π/2], sinm t ≤ sinm−1 t ≤ sinm−2 t.
So Im ≤ Im−1 ≤ Im−2. Dividing by Im: 1 ≤ Im−1/Im ≤ Im−2/Im = m/(m− 1).

As m → ∞, m/(m− 1) → 1, so by the sandwich Theorem, limm→∞
Im−1

Im
= 1.

And, from the explicit formulas mentioned above, we get:

I2n
I2n+1

=
(2n)!π

22n(n!)22
· (2n+ 1)!

22n(n!)2
=

((2n)!)2(2n+ 1)π

24n(n!)42
.
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Now, substitute n! ∼ dnn+1/2e−n into this limit expression. (2n)! ∼ d(2n)2n+1/2e−2n.

((2n)!)2(2n+ 1)π

24n(n!)4 · 2
∼ (d(2n)2n+1/2e−2n)2(2n+ 1)π

24n(dnn+1/2e−n)4 · 2

=
d2(2n)4n+1e−4n(2n+ 1)π

24nd4n4n+2e−4n · 2

=
d224n+1n4n+1e−4n(2n+ 1)π

24nd4n4n+2e−4n · 2

=
d2 · 2 · n4n+1(2n+ 1)π

d4n4n+2 · 2
=

(2n+ 1)π

d2n
.

As n → ∞, (2n+1)π
d2n → 2π

d2 . Since the limit is 1, we have 2π
d2 = 1, which implies d2 = 2π, so d =

√
2π

(since d must be positive). This completes the proof.

Proposition 7.4.2 (de Moivre-Laplace Theorem). Let Sn be the sum of n i.i.d. Bernoulli(p) random
variables. Let k be an integer. Let xk = k−np√

np(1−p)
. If xk remains in a bounded interval as n → ∞ (which

means k is not too far from np, specifically |k − np| = O(
√
n)), then

P (Sn = k) =

(
n

k

)
pk(1− p)n−k ∼ 1√

2πnp(1− p)
e−x2

k/2

as n → ∞. The convergence is uniform for k such that |k − np| ≤ a
√
n for any fixed a > 0.

Proof Sketch. This theorem is proved by applying Stirling’s formula to n!, k!, and (n−k)! in the binomial
coefficient

(
n
k

)
. From Stirling’s formula, we have for k ∈ In = [np− a

√
n, np+ a

√
n]:(

n

k

)
pk(1− p)n−k =

n!

k!(n− k)!
pk(1− p)n−k.

Applying Stirling’s m! ∼
√
2πm(m/e)m:(

n

k

)
pk(1− p)n−k ∼

√
2πn(n/e)n√

2πk(k/e)k
√
2π(n− k)((n− k)/e)n−k

pk(1− p)n−k

=
1√
2π

√
n

k(n− k)

(np
k

)k (n(1− p)

n− k

)n−k

.

Let k = np+ δn, where δn = xk

√
np(1− p). Since |k − np| = O(

√
n), δn/n → 0.

Notice that
√

n
k(n−k) ∼

1√
np(1−p)

. The term
(
np
k

)k (n(1−p)
n−k

)n−k

is then analyzed using Taylor expansions

of logarithms, similar to:

ln

[(np
k

)k (n(1− p)

n− k

)n−k
]
= k ln

(
1− δn

np+ δn

)
+ (n− k) ln

(
1 +

δn
n(1− p)− δn

)
.

Using the taylor series ln(1+u) ≈ u−u2/2 and doing some manipulations, this logarithm simplifies to ap-

proximately − δ2n
2np(1−p) = −x2

k/2. Thus,
(
np
k

)k (n(1−p)
n−k

)n−k

∼ e−x2
k/2. Combining these approximations

yields the result.

After this, proving the original result for this case isn’t hard, and we are not including it here.
The rough idea uses the fact that the de Moivre-Laplace Theorem approximates each P (Sn = k) by a
value proportional to the height of the standard normal curve at the corresponding standardized point
xk = k−np

σn
. This sum then becomes a Riemann sum for the integral of the normal density function over

the interval [a, b] where 1
σn

acts like the infinitesimal width dx.
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