

# भारतीय प्रौद्योगिकी संस्थान मुंबई

# **Indian Institute of Technology Bombay**

### **Expand and Conquer**

IE 619 Ruleset Presentation

Aditya Khambete April 21, 2025

> ज्ञानम् परमम् ध्येयम् Knowledge is the supreme goal

# The game setup





Figure: Example starting position

Start on m \* n grid, blue and red pieces across the board

# The rules of the game



#### Definition

(Connected Group) The set of orthogonally adjacent pieces of same color

# The rules of the game



#### Definition

(Connected Group) The set of orthogonally adjacent pieces of same color

#### Definition

(Expanding a Group) Filling in all the orthogonally adjacent squares to your chosen connected group.

# The rules of the game



#### Definition

(Connected Group) The set of orthogonally adjacent pieces of same color

#### Definition

(Expanding a Group) Filling in all the orthogonally adjacent squares to your chosen connected group.

• (Move) Choose a group and expand your group

# **Example Move**







Figure: blue choosing to expand the top group

#### How does it end?







Figure: blue choosing to expand the top group

The game ends, since red no longer has any move to play, and blue wins

# Let's play one then





Figure: Lets play this one

# **Integers**



See the given position-



Figure: What do you think the game value is

# Integers



See the given position-



Figure: What do you think the game value is

Hint: Think inductively

# Integers



See the given position-



Figure: What do you think the game value is

Hint: Think inductively Spoiler: G=5, why?





Figure: Guess the game value





Figure: Guess the game value

Okay guess this one first-



Figure: Hint: Try to think options of both players





Figure: Guess the game value

Okay guess this one first-



Figure: Hint: Try to think options of both players

The below one is 1/2, why?





Figure: Guess the game value

Okay guess this one first-



Figure: Hint: Try to think options of both players

The below one is 1/2, why? The above one is 1/8, why?

# **Disjunctive Sum**





Figure: Hint: Look at the slide title

# **Disjunctive Sum**





Figure: Hint: Look at the slide title

$$G=1/8+1/2=5/8$$





Figure: Can red move?





Figure: Can red move?

Same rules but one more power





Figure: Can red move?

Same rules but one more power You can put a single piece at a square not accessible by any of your groups using Rule-1





Figure: Can red move?

Same rules but one more power You can put a single piece at a square not accessible by any of your groups using Rule-1 Where else can red move now?





Figure: Can red move?

Same rules but one more power

You can put a single piece at a square not accessible by any of your groups using Rule-1 Where else can red move now? Yes! in the bottom right corner

# Example All-Small game





Figure: An example allsmall game, Rule 1 means the normal expand rule, rule 2 means the all-small rule. Notice red wins

### **Infinitesimals**





 $\begin{tabular}{ll} Figure: Guess the game value (Assume All-Small), Hint again is the slide title \\ \end{tabular}$ 

### **Infinitesimals**





Figure: Guess the game value (Assume All-Small), Hint again is the slide title

Answer:  $\{0 \mid *\} = \uparrow$ 

## A pattern



Let  $g_n = 'X^*O^*O \cdots O^{*'}$  where number of 'O's is n (all small), Then

# A pattern



Let  $g_n = 'X^*O^*O \cdots O^*'$  where number of 'O's is n (allsmall), Then

| Game                  | Canonical Form                 | Atomic Weight |
|-----------------------|--------------------------------|---------------|
| <i>g</i> <sub>1</sub> | <b>†</b>                       | 1             |
| 82                    | $\downarrow$                   | -1            |
| <i>g</i> 3            | $\uparrow \uparrow$            | 2             |
| 83<br>84              | 0                              | 0             |
| <i>g</i> 5            | $\uparrow \uparrow \uparrow$   | 3             |
| 85<br>86              | $\uparrow \uparrow \uparrow *$ | 3             |
| <i>8</i> 7            | $\uparrow 4$                   | 4             |

Table: Games of form  $g_n$ 

## A pattern



Let  $g_n = 'X^*O^*O \cdots O^*'$  where number of 'O's is n (allsmall), Then

| Game           | Canonical Form                 | Atomic Weight |
|----------------|--------------------------------|---------------|
| <i>8</i> 1     | <b>†</b>                       | 1             |
| 82             | <b>\</b>                       | -1            |
| 83             | $\uparrow\uparrow$             | 2             |
| 84             | 0                              | 0             |
| <i>g</i> 5     | $\uparrow\uparrow\uparrow$     | 3             |
| 85<br>86<br>87 | $\uparrow \uparrow \uparrow *$ | 3             |
| <i>8</i> 7     | $\uparrow 4$                   | 4             |

Table: Games of form  $g_n$ 

#### Conjecture

 $g_{2n-1} = \uparrow n$  where  $g_k$  is defined as above.

# One more Conjecture





Figure: Who forces a win, first mover or second?

# One more Conjecture





Figure: Who forces a win, first mover or second?

#### Conjecture

For empty boards of size  $m^*n$ , the (allsmall) game is 0 if  $m^*n$  is even, else the game is \*.

### Thank You



Thank you, any questions are welcome



# भारतीय प्रौद्योगिकी संस्थान मुंबई

# **Indian Institute of Technology Bombay**