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ABSTRACT
We study the setting of liquid democracy, where the voters are

allowed to vote directly or delegate there votes to those more in-

formed. In this paper we propose some extension to existing local

delegation mechanism of GreedyCap, and then extend the setting

to from binary alternatives (1 correct, 1 incorrect) to multiple alter-

natives.
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1 INTRODUCTION
In a Direct Democracy, the agents can vote on every issue by them-

selves. In Liquid Democracy, in addition to this, agents can delegate

their votes transitively. For example if A delegates her vote to B,

and B does so to C. In this case, agent C will bear the weight of

votes of all three agents, including herself. The liquid metaphor

could be seen through, how the vote of A flows to B, and hence to

C. More generally the votes flow freely in a delegation graph until

they reach a sink. The roots of liquid democracy could be traced

back as long as Miller III [7], the key difference is here the proxies

who are selected by the voters to vote on their behalf, may dele-

gate their own vote to a proxy. In recent years, this approach has

been implemented and been used on a large scale, particularly by

eclectic political parties such as German Pirate Party in Germany,

and Demoex in Sweden. One of the main reasons for the success

of liquid democracy is it provides the best of both worlds of direct

democracy and representative democracy.

The existing work in liquid democracy focuses majorly on binary

outcomes, where one choice is correct and one is incorrect, and

there are some papers such as Bersetche [1] focus on multi-agent

delegation mechanism, but none go into generalising it for more

choices.

In this paper, we study some existing local mechanisms, mainly

GreedyCap from Kahng et al. [4] try to optimize them a bit more,

and also extend them to the general setting of non-binary outcomes

with single-agent delegation.
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2 CONTRIBUTIONS
This project builds upon the foundational work of Kahng et al. [4],

which introduces the concepts of Positive Gain (PG), Do No Harm

(DNH), and the non-local GREEDYCAP mechanism, which satisfy

both DNH and PG in a restricted setting.

• We propose two variations of the GreedyCap Algorithm-

– Modified GREEDYCAP: Prioritizes delegation from less

competent voters when applying the cap.

– DOUBLEGREEDYCAP: Processes the least competent voters

first and delegates to the most competent available neigh-

bor under the cap. Our simulations suggest this approach

yields improved empirical performance compared to the

original GREEDYCAP.

• We propose the extension of LD to non-binary models, based

on the idea of Mallows [6]. This utilises the kendall tau dis-

tance Kendall [5] and the defined dispersion parameter𝜙𝑖 for

each agent. This allows us to find the probability distribution

of a person over the alternatives. This naturally extends, to

allow the notions of

– PG, DNH

– Local/Non-Local Mechanisms

– Specific Mechanisms, such as GreedyCap
in the general setting as well.

3 RELATEDWORK
Kahng et al. [4] is a foundational work, and establishes a clear

distinction between local and non-local delegation mechanisms.

Establishes that local mechanisms can’t guarantee better results

than direct voting, and propose some non-local mechanisms which

perform better under a certain set of assumptions.

Gölz et al. [3] proposes allowing agents to specify multiple dele-

gation options instead of just one to avoid the weakness of liquid

democracy that a small subset of agents may gain massive influence

Brill et al. [2] introduce multi-agent ranked delegations, enabling

agents to specify backup delegates through preference rankings.

Tyrovolas et al. [8] extends delegation throughmonotonic Boolean

functions, allowing conditions like "vote yes if a majority of friends

do." They analyze MinSum and MinMax unravelling procedures,

proving computational hardness for MinSum with non-trivial func-

tions while showing polynomial-time solutions for restricted cases

like OR/AND operations.

4 BINARY OUTCOME SETTING
4.1 Model
We represent the first instance of our problem, which is in binary,

very similarly to that in Kahng et al. [4]. Let

𝐺 = (𝑉 , 𝐸, ®𝑝) ,where 𝑉 = {1, 2 · · ·𝑛}



denote the graph of voters, where E represents the pair of voters

which know each other. Each voter is labeled by his competence

level 𝑝𝑖 ∈ [0, 1], which is the probability of him currently voting

on some issue.

Further, we define a constant 𝛼 which allows us to define the set

of people a voter might delegate their vote to.

We assume 𝑖 approves 𝑗 iff and only if-

𝑝 𝑗 > 𝑝𝑖 + 𝛼
This helps us to define naturally the set of all approved voters by 𝑖

𝐴𝐺 (𝑖) = { 𝑗 ∈ 𝑉 | (𝑖, 𝑗) ∈ 𝐸, 𝑖 approves 𝑗}
Each agent delegates his vote using some delegation mechanism

𝑀 , which takes inputs the graph 𝐺 as defined above, and outputs

a probability distribution over 𝐴𝐺 (𝑖) ∪ {𝑖}. Once we have this

probability distribution we apply𝑀 to 𝐺 , and sample the resulting

probability distribution to get a delegation graph, with each sink

(vertex with no outgoing edge) having weight equal to the number

of vertices with directed path leading to that sink. Each sink votes

with his probability of 𝑝𝑖 , and based on the weighted majority we

make a decision.

The probability of this process yielding the correct decision is

denoted by 𝑃𝑀 (𝐺). Notice, there is always a trivial mechanism

where no delegation happen, we call that the ’direct mechanism’

and denote it by 𝐷 , and hence we denote the probability of correct

decision here as 𝑃𝐷 (𝐺)
A mechanism is called local, where each voter makes a indepen-

dent delegation delegation, without any central coordination.

Since we want to compare the difference between direct voting

and given mechanism, we define the gain of a mechanism M over

G as-

𝐺𝑎𝑖𝑛(𝑀,𝐺) = 𝑃𝑀 (𝐺) − 𝑃𝐷 (𝐺)
Based on this we define some properties of a mechanism,

Definition 4.1 (Do No Harm (DNH)). A mechanism M satisfies

𝐷𝑁𝐻 if∀𝜖 > 0, ∃𝑛1 such that for all graphs𝐺𝑛 with𝑛 ≥ 𝑛1 vertices,

𝐺𝑎𝑖𝑛(𝑀,𝐺𝑛) ≥ −𝜖

Definition 4.2 (Positive Gain (PG)). A mechanism M satisfies 𝑃𝐺

if ∃𝛾 > 0, 𝑛0 ∈ N, such that for all 𝑛 ≥ 𝑛0, ∃𝐺𝑛 with n vertices such

that, 𝐺𝑎𝑖𝑛(𝑀,𝐺𝑛) ≥ 𝛾

Intuitively, we can see PG says there is some graph where gain

is positive, while DNG says that after a certain point, gain can’t be

lower than a certain threshold.

4.2 Main Results
We state the following result without proof, from Kahng et al. [4]

Theorem 4.3. For any 𝛼0 ∈ [0, 1), there is no local mechanism

that satisfies the PG and DNH properties.

The main idea behind proof is after a certain point, liquid democ-

racy can lead to a point where mistakes of few popular voter might

tip the scales in wrong direction, so we need to explore the possi-

bility of non-local mechanisms.

An example non-local mechanism is explored in [4] which is the

GreedyCap algorithm. Under a particular setting, this algorithm in

fact satisfies both DNH and PG properties as stated by the theorem

below-
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Figure 1: Notice if everyone delegates to the center here, the
𝑃𝑀 is 4/5, while the 𝑃𝐷 goes to 1 as number of leaves increase

Algorithm 1 GreedyCap

Require: labeled graph 𝐺 , cap 𝐶 : N→ N
1: 𝑉 ′ ← 𝑉

2: while 𝑉 ′ ≠ ∅ do
3: let 𝑖 ∈ argmax𝑗∈𝑉 ′ |𝐴−1𝐺

( 𝑗) ∩𝑉 ′ |
4: 𝐽 ← 𝐴𝐺 (𝑖) ∩𝑉 ′
5: if |𝐽 | ≤ 𝐶 (𝑛) − 1 then
6: 𝐽 ′ ← 𝐽

7: else
8: let 𝐽 ′ ⊆ 𝐽 such that |𝐽 ′ | = 𝐶 (𝑛) − 1
9: end if
10: vertices in 𝐽 ′ delegate to 𝑖
11: 𝑉 ′ ← 𝑉 ′ \ ({𝑖} ∪ 𝐽 ′)
12: end while

Theorem 4.4. Assume that there exists 𝛽 ∈ (0, 1
2
) such that all

competence levels are in [𝛽, 1 − 𝛽]. Then for any 𝛼 ∈ (0, 1 − 2𝛽),
GreedyCap with cap 𝐶 : N→ N such that 𝐶 (𝑛) ∈ 𝜔 (1) and 𝐶 (𝑛) ∈
𝑜 (
√︁
log𝑛) satisfies the PG and DNH properties.

But this mechanism, still has some shortcomings, notice that we

are randomly chosing 𝐶 (𝑛) − 1 delegators, we can make an easy

modification as follows.

Algorithm 2 ModifiedGreedyCap

Require: labeled graph 𝐺 with 𝑛 vertices, cap 𝐶 : N→ N
1: 𝑉 ′ ← 𝑉

2: while 𝑉 ′ ≠ ∅ do
3: let 𝑖 ∈ argmax𝑗∈𝑉 ′ |𝐴−1𝐺

( 𝑗) ∩𝑉 ′ |
4: 𝐽 ← 𝐴−1

𝐺
(𝑖) ∩𝑉 ′

5: if |𝐽 | ≤ 𝐶 (𝑛) − 1 then
6: 𝐽 ′ ← 𝐽

7: else
8: let 𝐽 ′ ⊆ 𝐽 be the 𝐶 (𝑛) − 1 nodes with the lowest com-

petence

9: end if
10: vertices in 𝐽 ′ delegate to 𝑖
11: 𝑉 ′ ← 𝑉 ′ \ ({𝑖} ∪ 𝐽 ′)
12: end while



Figure 2: Comparision of the Mechanisms

This little modification ensures more competent voters remain

available to receive delegations in later iterations, potentially im-

proving overall decision quality, which aligns with the basic princi-

ple of liquid democracy of rewarding the higher competent voters.

Also since, we are changing nothing except taking 𝐶 (𝑛) − 1 least
competent voters instead of random, so the following theorem

which is equivalent of Theorem 4.4 is immediate-

Corollary 4.5. Assume that there exists 𝛽 ∈ (0, 1
2
) such that all

competence levels are in [𝛽, 1 − 𝛽]. Then for any 𝛼 ∈ (0, 1 − 2𝛽),
ModifiedGreedyCap with cap 𝐶 : N → N such that 𝐶 (𝑛) ∈ 𝜔 (1)
and 𝐶 (𝑛) ∈ 𝑜 (

√︁
log𝑛) satisfies the PG and DNH properties.

Now we introduce another mechanism, which does better than

both GreedyCap and ModifiedGreedyCap in our simulations. We

take an opposite approach, and greedily delegate the least compe-

tent voter to their most competent neighbour, who hasn’t reached

the cap of 𝐶 (𝑛) Given the results of the simulation, we clearly

expect DoubleGreedyCap to perform as good as GreedyCap, so

naturally we expect them to follow the equivalent of Theorem 4.4,

as stated below

Theorem 4.6. Assume that there exists 𝛽 ∈ (0, 1
2
) such that all

competence levels are in [𝛽, 1 − 𝛽]. Then for any 𝛼 ∈ (0, 1 − 2𝛽),
DoubleGreedyCap with cap 𝐶 : N→ N such that 𝐶 (𝑛) ∈ 𝜔 (1) and
𝐶 (𝑛) ∈ 𝑜 (

√︁
log𝑛) satisfies the PG and DNH properties.

Proof Sketch. The proof follows the same structure as the

proof for Theorem 4.4 stated in Kahng et al. [4] The argument

mainly rely on the bound [𝛽, 1−𝛽] of 𝑝𝑖 , and (0, 1−𝛽) of 𝛼 , and the
cap condition 𝐶 (𝑛) ∈ 𝑜 (

√︁
log𝑛) to bound votes and ensure DNH.

The condition 𝐶 (𝑛) ∈ 𝜔 (1) ensures sufficient delegation occurs for

PG. Since DoubleGreedyCap operates under the same bounds for

𝑝𝑖 , 𝛼 and same cap 𝐶 (𝑛), the essential components of the original

proof apply directly. The change in the order of dealing with nodes

does not change the validity of the bounds derived from the cap

size. The mechanism of delegating to more competent approved

neighbors ensures positive gain remains. □

5 NON-BINARY OUTCOMES
5.1 Model
We now extend the model to handle scenarios with 𝑛 ≥ 3 possible

outcomes or alternatives, building upon the above framework.

Algorithm 3 DoubleGreedyCap

Require: labeled graph 𝐺 with 𝑛 vertices, cap 𝐶 : N→ N
1: 𝑉 ′ ← 𝑉

2: Initialize weights𝑤𝑖 ← 1 for all 𝑖 ∈ 𝑉
3: while 𝑉 ′ ≠ ∅ do
4: let 𝑖 ∈ argmin𝑗∈𝑉 ′ 𝑝 𝑗 ⊲ Select least competent voter

5: if 𝑤𝑖 ≥ 𝐶 (𝑛) then
6: 𝑖 votes with weight𝑤𝑖

7: else
8: let 𝑆 be approved neighbors of 𝑖 in 𝑉 ′, sorted by 𝑝 𝑗

descending

9: for each 𝑗 ∈ 𝑆 do
10: if 𝑤 𝑗 +𝑤𝑖 ≤ 𝐶 (𝑛) then
11: Delegate𝑤𝑖 to 𝑗

12: 𝑤 𝑗 ← 𝑤 𝑗 +𝑤𝑖

13: 𝑤𝑖 ← 0

14: break
15: end if
16: end for
17: if no delegation occurred then
18: 𝑖 votes with𝑤𝑖

19: end if
20: end if
21: 𝑉 ′ ← 𝑉 ′ \ {𝑖}
22: end while

The underlying graph structure 𝐺 = (𝑉 , 𝐸) with voters 𝑉 =

{1, 2, . . . , 𝑛} and edges 𝐸 remains the same as in the binary case.

However, instead of a simple binary competence, we need to define

voter quality and preferences are defined differently.

Let A be the set of 𝑚 distinct alternatives (𝑚 ≥ 3). Voters’

preferences are represented by permutations(rankings) of these

alternatives. Let S be the set of all𝑚! possible rankings. We assume

there exists a ground truth ranking 𝜎∗ ∈ S.
Each voter 𝑖 is characterized by a dispersion parameter 𝜙𝑖 ∈

(0,∞). This parameter is inversely related to competence or accu-

racy; a smaller 𝜙𝑖 indicates the voter’s sampled rankings are more

likely to be close to the ground truth 𝜎∗. 𝜙𝑖 = 0 means the voter

is competent, and always will choose the correct outcome, while

as 𝜙𝑖 →∞ the voter will almost always choose the worst ranking,

which is the exact reverse of the ground truth.

Now we need a measure to quantify the difference between two

rankings 𝜎1, 𝜎2 ∈ S, we use the Kendall tau distance, denoted by

𝑑 (𝜎1, 𝜎2), which counts the number of pairs of alternatives ranked

discordantly between 𝜎1 and 𝜎2.

The probability that a voter 𝑖 internally samples a specific rank-

ing 𝜎 ∈ S, given the ground truth 𝜎∗, is proportional to their dis-
persion parameter raised to the power of the Kendall tau distance

between 𝜎 and 𝜎∗:

𝑃𝑖 (𝜎 | 𝜎∗) =
𝜙
𝑑 (𝜎,𝜎∗ )
𝑖∑

𝜎 ′∈S 𝜙
𝑑 (𝜎 ′,𝜎∗ )
𝑖

The summation in the denominator normalises, so the overall sum-

mation is 1.



So clearly, delegation decisions are now based on comparing

dispersion parameters. Let 0 < 𝜆′ < 1 be a constant threshold

parameter (analogous to 𝛼 in the binary model, but used multi-

plicatively this time). Voter 𝑖 approves voter 𝑗 if (𝑖, 𝑗) ∈ 𝐸 and 𝑗 is

sufficiently less dispersed (more competent) than 𝑖 , specifically

𝐴𝐺 (𝑖) = { 𝑗 ∈ 𝑉 | (𝑖, 𝑗) ∈ 𝐸 and 𝜙 𝑗 < 𝜙𝑖 · 𝜆′}

This naturally defines the set 𝐴𝐺 (𝑖) of voters approved by 𝑖 for

delegation, very similar to the binary case.

Given this setup, the concept of a delegation mechanism𝑀 out-

putting a probability distribution over𝐴𝐺 (𝑖)∪{𝑖} remains identical.

Similarly, sampling these distributions outputs a delegation graph

with sinks 𝑠 and corresponding weights𝑤 (𝑠) representing the num-

ber of voters whose delegation path terminates at 𝑠 .

Another crucial difference lies in how the final outcome is cho-

sen.

(1) Each sink node 𝑠 samples a ranking 𝜎𝑠 ∈ S according to its

own probability distribution 𝑃𝑠 (· | 𝜎∗).
(2) Sink 𝑠 then casts its entire weight𝑤 (𝑠) for the single alter-

native that is ranked first in its sampled ranking, i.e., for

𝑡𝑜𝑝 (𝜎𝑠 ).
(3) The votes for each alternative across all sinks are summed.

(4) The final winning alternative is the one that receives the

highest total weight (First-Past-The-Post).

Success in this model is defined as the winning alternative match-

ing the top-ranked alternative in the ground truth ranking, 𝑡𝑜𝑝 (𝜎∗).
Similar to the earlier case, we denote the probability of success

under mechanism 𝑀 as 𝑃𝑀 (𝐺) and under the direct mechanism

(where everyone votes based on their own sampled top choice) as

𝑃𝐷 (𝐺).
With these probabilities defined based on top-rank accuracy, the

definitions for 𝐺𝑎𝑖𝑛(𝑀,𝐺), Do No Harm (DNH), and Positive Gain

(PG) remain syntactically identical to those presented in the binary

case definitions (Definition 1 and 2), but are now interpreted in

the context of this 𝑛-outcome model and the First-Past-The-Post

aggregation rule.

5.2 Main Results
Notice our new framework allows us to retain all of the earlier ideas

and notions, just the main difference being the number of possible

outcomes, and the use of dispersion parameters. In fact, we can

extend all our results by a very similar argument to this setting as

well.

Particularly, the definition of Local and Non-Local mechanism

stays the same, so based on that, we state the following result-

Theorem 5.1. Consider the extended model for non-binary out-

comes (𝑚 ≥ 3) with success defined as top-rank accuracy under

First-Past-The-Post aggregation. For any approval threshold parame-

ter 𝜆′
0
∈ (0, 1) , there is no local delegation mechanism that satisfies

both the PG and DNH properties.

We can show this using a very similar argument to that used for

proving the binary counterpart to this theorem.

Roughly, we construct a specific ’star graph’ where less informed

’leaf’ voters see only a few ’center’ voter, locality ensures the leafs

independently delegate causing a heavy concentration in the center.

In direct voting, this succeeds with probability going to 1 averaging

out individual errors. This ensures the mechanism’s gain eventually

becomes permanently negative, violating DNH.

Notice we can extend our algorithms (namely GreedyCap, Mod-

ifiedGreedyCap and DoubleGreedyCap) to this setting as well.

So clearly, it is very natural to expect an equivalent of Theorem 4.3

for this setting as well. However for that, we face a small problem,

the earlier version requires the competence values 𝑝𝑖 ∈ [0, 1], but
due to the framing of this setting, we can’t directly define 𝑝𝑖 in this

case, but we do have dispersion parameter, roughly determining the

competence of each voter, so we can write the equivalent theorem

as-

Theorem 5.2. If

• Dispersion parameters 𝜙𝑖 are in [𝜙min_bound
, 𝜙

max_bound
], for

some 0 < 𝜙
min_bound

≤ 1 ≤ 𝜙
max_bound

< ∞,
• The approval parameter 𝜆′ ∈ (𝜙

min_bound
, 1),

• The cap 𝐶 (𝑛) ∈ 𝜔 (1) ∩ 𝑜 (
√︁
log𝑛),

then GREEDYCAP satisfies both PG and DNH under First Past the Post

aggregation.

The reasoning behind the proof is also not very hard. Delegation

using the ratio rule directs votes towards competent sinks (𝜙 < 1),

and the cap 𝐶 (𝑛) ∈ 𝑜
√︁
log𝑛 prevents any single sink’s vote (even

from many anti-competent delegators) from dominating due to

excessive weight. So, in favorable structures, concentrating votes

on competent sinks achieves PG. Similarly, on random graphs, the

cap limits harmful concentration, ensuring DNH.

6 CONCLUSION
So we have successfully extended the binary choice model, to a

model which works for any general 𝑛 outcomes. We rely on exis-

tence of Ground Truth. The model described here relies on plurality

(i.e. First-Past-The-Post) for aggregation, however for other voting

models such as approval voting, it should not be very hard to gen-

eralise the results. We can also restrict the permutation space, to

say single peaked sets, the normalisation term in the expression of

probability distribution changes, keeping the main ideas same.
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