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Abstract

This is the running document for the supervised learning program I am doing this semester under
the guidance of Prof. Ayan Bhattacharya. The aim of this document is to provide a comprehensive
understanding of the topics I cover in the program. The document is divided into chapters, each chapter
covering what I have learned in a week. The document is a work in progress and will be updated regularly.
The references I am using for this program are mentioned in the beginning of each chapter.



Chapter 1

Week 1

Abstract

Covered Topics:

� Chapter 1-5 from the book

References: Lecture notes of Prof. Ayan Bhattacharya [1] and the book by Lesigne [2]

1.1 Basic Probability

Let (Ω, P ) be a finite probability space. 1 Write Ω = {ω1, ω2, . . . , ωn} and P (ωi) = pi. We have the
most basic formula of probability i.e.

1 =
∑
i

pi, where each 0 ≤ pi ≤ 1 (1.1)

Definition 1.1.1. The probability of an event A is defined as

P (A) =
∑
ωi∈A

pi =

n∑
i=1

piIA(ωi) (1.2)

where IA is the indicator function of A. This function maps ωi to 1 if ωi ∈ A and 0 otherwise.

Some more basic properties of probability are:

� P (Ω) = 1

� P (A ∪B) = P (A) + P (B) if A ∩B = ∅

Such set Ω is called a sample space, and P is called a probability function. It is easy to see from above
properties that

� P (∅) = 0

� P (Ac) = 1− P (A)

� P (A ∪B) = P (A) + P (B)− P (A ∩B)

Definition 1.1.2. The Probability Space is called uniform if pi is the same for all ωi.

1The book doesn’t mention the sigma field F .
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1.1.1 Sequential Experiments

Let us demonstrate this through an elementary example. Assume a binary experiment, taking outcomes
0,1 with q,p respectively. Easy to see that p+ q = 1. Now, consider we repeat this experiment n times.
The sample space in this case is Ωn = {0, 1}n. The probability of a sequence ω = (ω1, ω2, . . . , ωn) is

P ((ω1, ω2, . . . , ωn)) = p
∑

i ωiqn−
∑

i ωi (1.3)

This is the probability function defined on the sample space Ωn. This is a simple example of a product
probability space. We say the space Ωn = {0, 1}n is equipped with the probability function Pn = (q, p)⊗n,
where q,p are the probabilities of 0,1 respectively.
More details on why we did this product come from the notion of independence.

1.2 Random Variables

Definition 1.2.1. A random variable is a function X : Ω → R.

We use the denotion (X = x) for the set {ω ∈ Ω : X(ω) = x}. The probability of this event is
P (X = x), this is also known as the probability mass function of X. Similarly cumulative distribution
function is defined as F (x) = P (X ≤ x).

A very underrated fact is the space of random variables is a vector space. This is because the sum
of two random variables is also a random variable, so is the product of a random variable with a scalar.
The basis of this vector space is the indicator functions of the form Iωi

where ωi ∈ Ω. 2

Definition 1.2.2. Expectation of a random variable X is defined as (if the sum converges)

E[X] =

k∑
i=1

xiP (X = xi), where k is the number of distinct values of X (1.4)

Some easy to see properties3 of expectation are:

� |E[X]| ≤ E[|X|]

� E[X] ≥ 0 if X ≥ 0

� E[c] = c for any constant c, particularly E[E[X]] = E[X]

� E[aX] = aE[X]

� E[X + Y ] = E[X] + E[Y ]

Say we write X =
∑k

i=1 xiIAi
, where Ai = (X = xi). Then E[X] =

∑k
i=1 xiP (Ai), say we take some

function g : R → R, then write Y = g(X) =
∑k

i=1 g(xi)IAi
, hence applying E on both sides, we get

E[Y ] = E[g(X)] =

k∑
i=1

g(xi)P (Ai) (1.5)

1.2.1 Some nice inequalities

Theorem 1.2.3. Markov’s Inequality: Let X be a non-negative random variable, then for any a > 0,
we have

P (X ≥ a) ≤ E[X]

a
(1.6)

This inequality right above is in some sense the mother of all inequalities. The proof is fairly easy,
just use the fact that P (X ≥ a) can be written as a summation of P (X = xi) for xi ≥ a, multiply by xi

a
and sum over all xi.

2Iωi is the function that maps ωi to 1 and all other ωj to 0. As one might expect, this is a random variable as well.
3The last 2 facts imply E is a linear functional on the vector space of random variables.
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Theorem 1.2.4. Chebyshev’s Inequality: Let X be a random variable with finite expectation and
variance, then for any a > 0, we have

P (|X − E[X]| ≥ a) ≤ V ar[X]

a2
(1.7)

Follows fromMarkov’s inequality, just use the fact that V ar[X] = E[(X−E[X])2], and apply Markov’s
inequality on Y = (X − E[X])2.

Definition 1.2.5. The variance of a random variable X is defined as

V ar[X] = E[(X − E[X])2], it simplifies to E[X2]− E[X]2 (1.8)

1.3 Independence

Definition 1.3.1. Two events A,B are independent if P (A ∩B) = P (A)P (B). Except the trivial case

with P (B) = 0, we can write this as P (A∩B)
P (B) = P (A)

P (Ω) .

Once we have the notion of independence, we can check where does the product probability space
come from.

P ((ω1, ω2, . . . , ωn)) = p
∑

i ωiqn−
∑

i ωi (1.9)

Let us extend the notion to more than 1 event,

Definition 1.3.2. A set of events A1, A2, . . . , An are independent if for any subset I ⊂ {1, 2, . . . , n}, we
have

P (∩i∈IAi) =
∏
i∈I

P (Ai) (1.10)

One very important thing to note is that if the events A1, A2, . . . , An satisfy P (∩i∈IAi) =
∏

i∈I P (Ai)
it doesn’t imply that the events are independent, just take one of the events to be the empty set for
example. An interesting example showing that pairwise independence doesn’t imply mutual independence
is the following. Say we havre a fair coin, define,

A1 = {HH,HT}
A2 = {HH,TH}
A3 = {HT, TH}

Then A1, A2, A3 are pairwise independent, but not mutually independent.

1.3.1 Independence of Random Variables

Random variables are independent if the events {Xi = x} are independent for all x ∈ R. Alternatively, we
can say that the events (X1 ∈ B1) , (X2 ∈ B2), . . ., (Xn ∈ Bn) are independent for allB1, B2, . . . , Bn ⊂ R.
Its not hard to notice the following facts:

� independence of random variables doesn’t depend on the order of the random variables.

� random variablesX1, X2, . . . , Xn are independent if the events (X1 = x1 and X2 = x2 and . . . and Xj−1 =
xj−1)

4 is independent of (Xj = xj) for all j ∈ {2, 3, . . . , n}, x1, x2, . . . , xj−1, xj ∈ R.

� 2 events are independent if and only if the indicator functions are independent.

Now notice the following fact,

Theorem 1.3.3. If X,Y are independent random variables, then

E[XY ] = E[X]E[Y ] (1.11)

4Writing (X1 = x1 and X2 = x2) is the same as writing (X1 = x1) ∩ (X2 = x2)
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Proof. Let A and B be the range of X,Y respectively,
We have

E[XY ] =
∑
x∈A

∑
y∈B

xyP (X = x, Y = y)

=
∑
x∈A

∑
y∈B

xyP (X = x)P (Y = y)

=
∑
x∈A

xP (X = x)
∑
y∈B

yP (Y = y) {By Independence}

= E[X]E[Y ]

Corollary 1.3.4. If X,Y are independent random variables, then V ar[X + Y ] = V ar[X] + V ar[Y ]

Proof.

V ar[X + Y ] = E[(X + Y )2]− E[X + Y ]2

= E[X2] + E[Y 2] + 2E[XY ]− E[X]2 − E[Y ]2 − 2E[X]E[Y ]

= V ar[X] + V ar[Y ]

1.4 Binomial Distribution

Take the product probability space Ωn = {0, 1}n with Pn = (q, p)⊗n. Let Sn be the number of 1’s in the
sequence ω = (ω1, ω2, . . . , ωn). Then Sn is a random variable on Ωn.

Theorem 1.4.1. The probability mass function of Sn is given by

P (Sn = k) =

(
n

k

)
pkqn−k (1.12)

We say the random variable Sn follows a binomial distribution with parameters n, p. Note that q is
not a parameter, it is just 1− p.
To prove this, just notice the probability of selecting a specific sequence with k 1’s is pkqn−k, and the
number of such sequences is

(
n
k

)
.

Definition 1.4.2. Bernoulli distribution is a special case of binomial distribution with n = 1. It is the
same as a unbiased coin flip. Few properties-

� E[X] = p

� V ar[X] = pq = p(1− p)

Theorem 1.4.3. Let X1, X2, . . . , Xn be independent Bernoulli random variables with parameter p. Then
the sum Sn = X1 +X2 + . . .+Xn follows a binomial distribution with parameters n, p.s

The proof is fairly easy from the results we have already proved.

Theorem 1.4.4. E[Sn] = np and V ar[Sn] = npq

Proof.

E[Sn] = E[X1 +X2 + . . .+Xn]

= E[X1] + E[X2] + . . .+ E[Xn]

= np

For variance, we have

V ar[Sn] = V ar[X1 +X2 + . . .+Xn]

= V ar[X1] + V ar[X2] + . . .+ V ar[Xn]

= npq
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1.5 Weak Law of Large Numbers

As in the last section, let Sn be the number of successful trials in n independent Bernoulli trials with
parameter p. Then Sn follows a binomial distribution with parameters n, p. Sn is a random variable
over the product probability space (Ωn, Pn)
The experimental probability of success is Sn

n , intutively we expect this to be close to p as n increases.
This is the weak law of large numbers. 5

Theorem 1.5.1. Let X1, X2, . . . , Xn be independent Bernoulli random variables with parameter p. Let
Sn = X1 +X2 + . . .+Xn. Then for any ϵ > 0, we have

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ϵ

)
→ 0 as n → ∞ (1.13)

Proof. Use Chebyshev’s inequality, we have

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ϵ

)
≤ V ar[Sn/n]

ϵ2

=
V ar[Sn]

n2ϵ2

=
p(1− p)

nϵ2
(By Independence)

→ 0 as n → ∞

This has a nice application in analysis, the problem of uniformly approximating a continuous function
by a polynomial. This is known as Weierstrass Approximation Theorem. To state it rigorously, let
f : [0, 1]6 → R be a continuous function. Then for any ϵ > 0, there exists a polynomial P (x) such that
|f(x)− P (x)| < ϵ for all x ∈ [0, 1].
Serge Bernstein gave a probabilistic proof of this theorem.

Lemma 1.5.2. Let f be a continuous function on [0, 1]. Then,

supx∈[0,1]|f(x)− Pn(x)| → 0 as n → ∞ ,where Pn(x) =

n∑
k=0

(
n

k

)(n
k

)
(xk)(1− x)k (1.14)

Proof. Fix ϵ > 0, ∃ η such that

|x− y| < η =⇒ |f(x)− f(y)| < ϵ where 0 ≤ x, y ≤ 1 (1.15)

Consider the space (Ωn, Pn), and the random variable f
(
Sn

n

)
where Sn is as above. We have

E

[
f

(
Sn

n

)]
=

n∑
k=0

f

(
k

n

)
P (Sn = k)

=

n∑
k=0

f

(
k

n

)(
n

k

)
pk(1− p)n−k

By WLLN, we have

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ η

)
→ 0 as n → ∞ (1.16)

5The proof presented is not true for all distributions, it is true only for Bernoulli here, and more generally for any
distribution with finite variance, the standard statement of weak law of large numbers is for any distribution with finite
expectation, and the existence of variance is not necessary, and that proof is much more complicated.

6This can be generalised to any closed interval [a,b]
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Hence, ∃ N0 independent of p, such that for every n ≥ N0

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ > η

)
< ϵ (1.17)

Also we have ∣∣∣∣En

[
f

(
Sn

n

)]
− f(p)

∣∣∣∣ =
∣∣∣∣∣

n∑
k=0

f

(
k

n
− f(p)

)
Pn(Sn = k)

∣∣∣∣∣
breaking the sum into 2 parts, and applying the triangle inequality, we get the following upper bound,∑

| kn−p|≤η

∣∣∣∣f (
k

n

)
− f(p)

∣∣∣∣Pn(Sn = k) +
∑

| kn−p|>η

(∣∣∣∣f (
k

n

)∣∣∣∣+ |f(p)|
)
Pn(Sn = k)

≤
∑

| kn−p|≤η

ϵPn(Sn = k) +
∑

| kn−p|>η

2 sup
0≤x≤1

|f(x)|Pn(Sn = k)

=ϵ+ 2 sup
0≤x≤1

|f(x)|Pn

(∣∣∣∣Sn

n
− p

∣∣∣∣ > η

)
= ϵ+ 2 sup

0≤x≤1
|f(x)|ϵ

Which shows the upper bound can be made arbitrarily small, hence the proof.
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